Skip to main content

4 things I learned building chatbots for major brands in 2017

How to make bots more personal in business.
Image Credit: Syda Productions / Shutterstock.com

Watch all the Transform 2020 sessions on-demand here.


In 2017, my team powered chatbots and voice skills for leading brands like Nike, Vice, Jameson, Marriott Rewards, Simon, Gatorade, and more. We witnessed new user behaviors and uncovered an evolved set of best practices to build a chatbot. Here are four actionable learnings from our work that you should consider when launching your own chatbot in 2018.

1. Personalization drives engagement

Bots that are designed to segment and engage customers throughout the entire conversation drive higher metrics than chatbots that do not personalize the conversation. For example, in our testing, personalized results yielded the highest click-through to website, up to 74 percent in some cases.

This year, a leading athletic brand set out to inspire a sneaker style for girls across the globe. The brand launched a customized sneaker builder where the user uploads of a photo of her outfit, and magically, in an instant, the bot pulls up a pair of shoes that matches the uploaded picture. This experience drove a click-through rate 12.5X higher than the global brand average.

Bud Light launched a chatbot with the goal of driving demand and purchase of Bud Light’s team cans on game day throughout the NFL season. A personalized data model and chatbot powered the ordering and delivery of team cans every game day during the NFL season. The Bud Light chatbot acted as a utility to remind fans that it was game time, and to order Bud Light before the game. Bud Light saw an 83 percent engagement rate with personalization.


June 5th: The AI Audit in NYC

Join us next week in NYC to engage with top executive leaders, delving into strategies for auditing AI models to ensure fairness, optimal performance, and ethical compliance across diverse organizations. Secure your attendance for this exclusive invite-only event.


2. Get to the point quickly

Across multiple chatbots, about half of the first actions that users take is free text entry. Updating the onboarding copy to manage expectations — “this is a bot that can do X and Y,” for example — lowers that initial friction. If the first intent is help-related or a long-form text entry, you can provide a customer service number, FAQs, or an option to “talk to a human” from the very beginning.

When users get into the designed experience, point of sale should be within five clicks. For example, after A/B testing a chatbot across 250,000 users, we noticed a significant drop-off occured when the core focus (click to purchase, etc.) was beyond five clicks.

3. Chatbots go beyond mobile devices

Bots are an effective tool to drive real-world activities or offline conversions, with coupon redemption rates as high as 30 percent.

A leading quick-service restaurant brand launched a new bot that drove users through an immersive content experience with videos, quizzes, recipes, and coupons. This high engagement led to over 71,000 coupons redeemed from the chatbot.

The Jordan Brand aimed to reach elite high school football, basketball, and baseball athletes with an ongoing training chatbot experience for pre-season training. Jordan delivered nightly prep videos and daily workout series to a targeted group of high school athletes in advance of basketball season on Facebook Messenger. Athletes loved receiving push notifications reminding them to work out. Jordan saw an extremely high completion rate as well as a high re-engagement rate compared to regular customer relationship management programs: Over 70 percent of users surveyed enjoyed the experience.

4. Truly understand your users

Understanding why people did or did not enjoy the experience is key. One way to do this is using free text analysis to understand sentiment and drop-off. For example, we launched a new bot with a leading shoe retailer. Most people came to the bot knowing what specific shoe they wanted to buy or with a question about the shoe they already bought. Cater to the specific pain points and make sure your bot handles customer intent at every stage.

Finally, make sure to survey users and learn from both your best purchasers as well as your qualified no’s. One way to do this by asking your users directly. You can use a chatbot for net promoter score surveying.

Jonathan Shriftman is the director of business development at Snaps, a mobile messaging service.