Watch all the Transform 2020 sessions on-demand here.
The immediate benefit of RPA is that it can eliminate a lot of repetitive manual labor and free up humans for what they do best. But RPA also helps enterprises create a standardize framework for capturing data about how they execute processes, as well as data about how processes can get delayed or stalled.
“If you set up RPA the right way by instrumenting the process, it’s possible to gather data to use as the training set for machine learning,” said Catalytic chief revenue officer Ted Shelton in an interview at Transform 2019. “RPA is the gateway drug for AI.”
An RPA implementation not only puts the steps involved in a process into a bot script, it can also set up the framework for understanding how a process is affected by different variables.
A capital expenditure approval process, for example, might have a very specific flow, and different individuals might be involved depending on the price of equipment being requested. By automating this process and tracking it every step of the way, including responses to different kinds of requests, it’s possible to capture data about those steps and factors that go into requests being approved, delayed, or denied.
June 5th: The AI Audit in NYC
Join us next week in NYC to engage with top executive leaders, delving into strategies for auditing AI models to ensure fairness, optimal performance, and ethical compliance across diverse organizations. Secure your attendance for this exclusive invite-only event.
Once the company has enough data points, AI models can be created to make recommendations. For example, an AI model might suggest that a particular purchase is likely to be delayed by a request for a better justification. This can save time for everyone involved.
“This is why RPA is the gateway drug, it allows you to instrument the process,” Shelton said. “It is not just about process discovery, it can also help make sense of the results that happen in the process.”
An evolving definition of process
Historically, processes like managing customer data or facilitating purchases have been thought of as tasks that could be repeated by multiple people. Human process experts would go to great lengths to map out the various steps involved.
But other things have not traditionally been mapped. For example, if Sally is retiring, a process engineer may not map out the steps to throwing a great party. But this might be considered a process in the strict sense of the word, because it involves specific steps — such as sending out invites, recording RSVPs, reserving a space, and requisitioning supplies.
“Automation technology will allow us to treat a much broader array of activities as processes that can be automated,” Shelton said. It will also make it easier to recognize commonalities between activities. For example, a birthday party and an end-of-year holiday party might involve similar tasks.
And knowing how to throw parties might not just be good for morale, it could also boost the bottom line by making it easier to organize better sales events. For example, Chad Rich, a senior director at E. & J. Gallo Winery, said some of the more creative salespeople tend be better at organizing parties for wholesale wine buyers. Consequently, Rich’s team is looking at how they can create a party process that helps organize the details for larger sales events for the whole sales team. This involves managing details like ensuring they have enough wine lined up for the event, ordering decorations, sending out invitations, creating themed music playlists, and ensuring the event aligns with new wine product releases.
Better instrumentation is coming
RPA still requires a lot of human expertise to explain how a process works. Automated process discovery can help make sense of activities in a larger process but is are still limited to understanding individual interactions. “Today I can take a particular task out of the process and automate it, but I cannot map it across the enterprise,” Shelton explained.
Eventually, process discovery tools could instrument different aspects of the workplace. AI agents could acquire data from meetings and phone calls using automated transcription and natural language understanding tools. “It is not an intractable engineering problem, but one where the costs would far outweigh the benefits,” Shelton said.
In the short run, he expects tools to capture high value aspects for things like improving coordination of meetings or reducing overhead for salespeople in the field. “With the right technology, we can eliminate the coordination overhead,” Shelton said. And these efforts could end up becoming the building blocks for infusing AI into more pockets of the enterprise.